ANTICANCER POTENTIAL OF NOVEL PALLADIUM(II) COMPLEXES WITH ACYL PYRUVATES AS LIGANDS: DNA AND BSA INTERACTIONS AND MOLECULAR DOCKING STUDY

Nenad Joksimović ,
Nenad Joksimović
Contact Nenad Joksimović

Department of Chemistry, Faculty of Science, University of Kragujevac , Kragujevac , Serbia

Jelena Petronijević ,
Jelena Petronijević

Department of Chemistry, Faculty of Science, University of Kragujevac , Kragujevac , Serbia

Marina Serafinović ,
Marina Serafinović

Department of Chemistry, Faculty of Science, University of Kragujevac , Kragujevac , Serbia

Nenad Janković ,
Nenad Janković

Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac , Kragujevac , Serbia

Dejan Baskic
Dejan Baskic

Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac , Kragujevac , Serbia

Received: 28.04.2024.

Accepted: 16.05.2024. >>

Published: 30.04.2024.

Volume 6, Issue 1 (2024)

pp. 1-14;

https://doi.org/10.7251/STED2401001J

Abstract

Bearing in mind that some palladium complexes showed good antitumor potential while exhibiting less kidney toxicity comparing to cisplatin, to discover a new agents for chemotherapy with improved properties two novel palladium(II) complexes [Pd (L)2] (3A and 3B) with acyl pyruvates (O,O bidentate ligands) were synthesized and characterized by spectral (UV-Vis, IR, NMR, ESI-MS) and elemental analysis. The novel palladium(II) complexes were analyzed for their cytotoxic potential on human cancer cell lines (HeLa and MDA-MB 231) and normal fibroblasts (MRC-5). Results showed that complex 3A displayed very good cytotoxic activity, while complex 3B had moderate activity on the tested tumor cell lines. After 48h incubation with complex 3A, his IC50 values were similar to the IC50 values of cisPt. Notably, all IC50 of complex 3A on human fetal lung fibroblasts (MRC-5) were higher than 100 μM, indicating good selectivity. In addition, complex 3A induced apoptotic type of cell death, cell cycle arrest in G0/G1 phase in both HeLa and MDA-MB 231 cell lines. In addition, we revealed that 3A can be useful as adjuvants in cancer therapy by reducing the dose of cisplatin and in this manner its’ side effects. For the investigations of interactions between novel palladium(II) complex 3A and CT-DNA or bovine serum albumin (BSA) fluorometric titrations method was used. The obtained results implied that 3A has great affinity to displace ethidium bromide (EB) from the EB-DNA complex through intercalation, suggesting strong competition with EB. Results in fluorescence titration of BSA with complex 3A showed that the fluorescence quenching of BSA happens because of the formation of the 3A-BSA complex. Obtained Ka value is in the optimal range signifying that appropriate amount of 3A can be transported and distributed through the cells. In order to better understand the binding of newly synthesized complex 3A to BSA or DNA, molecular docking study was further performed.

Keywords

References

Abd Karim, N. H., Mendoza, O., Shivalingam, A., Thompson, A. J., Ghosh, S., Kuimova, M. K., & Vilar, R. (2014). Salphen metal complexes as tunable G-quadruplex binders and optical probes. RSC Advances, 4(7), 3355–3363.
Abu-Surrah, A. S., Safieh, K. A. A., Ahmad, I. M., Abdalla, M. Y., Ayoub, M. T., & Joksimović, N. (2024). Anticancer potential of novel palladium(II) complexes with acyl pyruvates as ligands: DNA and BSA interactions and molecular docking study. STED Journal, 6(1), 1–14.
Ajloo, D., Moghadam, E. M., Ghadimi, K., Ghadamgahi, M., Saboury, A. A., Divsalar, A., Sheikh Mohammadi, M., & Yousefi, K. (2015). Synthesis, characterization, spectroscopy, cytotoxic activity and molecular dynamic study on the interaction of three palladium complexes of phenanthroline and glycine derivatives with calf thymus DNA. Inorganica Chimica Acta, 430, 144–160.
Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B., & Ali, A. M. (2002). Biological activity of palladium (II) and platinum (II) complexes of the acetone Schiff bases of S-methyl-and S-benzyldithiocarbazate and the X-ray crystal structure of the [Pd (asme) 2](asme= anionic form of the acetone Schiff base of S-methyldithiocarbazate) complex. Journal of Inorganic Biochemistry, 92(3–4), 141–148.
Bertucci, C., & Domenici, E. (2002). Reversible and covalent binding of drugs to human serum albumin: methodological approaches and physiological relevance. Current Medicinal Chemistry, 9(15), 1463–1481.
Bork, M. A., Gianopoulos, C. G., Zhang, H., Fanwick, P. E., Choi, J. H., & McMillin, D. R. (2014). Accessibility and external versus intercalative binding to DNA as assessed by oxygen-induced quenching of the palladium (II)-containing cationic porphyrins Pd (T4) and Pd (t D4. Biochemistry, 53(4), 714–724.
Chiririwa, H., Moss, J. R., Hendricks, D., Meijboom, R., & Muller, A. (2013). Synthesis, characterisation and in vitro evaluation of palladium (II) iminophosphine complexes for anticancer activity. Transition Metal Chemistry, 38, 165–172.
Desoize, B., & Madoulet, C. (2002). Particular aspects of platinum compounds used at present in cancer treatment. Critical Reviews in Oncology/Hematology, 42(3), 317–325.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., M., C., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Cross, J. B. (2013).
González, L. M., Tercero, M. J., Matilla, A., Niclós-Gutiérrez, J., Fernández, T. M., López, C. M., Alonso, C., & González, S. (1997). Cis-dichloro (α, ω-diamino carboxylate ethyl ester) palladium (II) as palladium (II) versus platinum (II) model anticancer drugs: synthesis, solution equilibria of their aqua, hydroxo, and/or chloro species, and in vitro/in vivo DNA-binding properties. Inorganic Chemistry, 36(9), 1806–1812.
Guo, G., Liu, J., Wang, G., Zhang, D., Lu, J., & Zhao, G. (2016). Synthesis and biological evaluation of 3-(4-fluorophenyl)-1H-pyrazole derivatives as androgen receptor antagonists. Anti-Cancer Drugs, 27(4), 278–285.
Hartmann, J. T., & Lipp, H. P. (2003). Toxicity of platinum compounds. Expert Opinion on Pharmacotherapy, 4(6), 889–901.
Hartwig, A. (2010). The role of DNA repair in benzene-induced carcinogenesis. Chemico-Biological Interactions, 184(1–2), 269–272.
Joksimović, N. (2024). Anticancer potential of novel palladium(II) complexes with acyl pyruvates as ligands: DNA and BSA interactions and molecular docking study. STED Journal, 6(1), 1–14.
Joksimovic, N., Jankovic, N., Petronijevic, J., Baskic, D., Popovic, S., Todorovic, D., Zaric, M., Klisuric, O., Vranes, M., Tot, A., & Bugarcic, Z. (2020). Synthesis, anticancer evaluation and synergistic effects with cisplatin of novel palladium complexes: DNA, BSA interactions and molecular docking study. Medicinal Chemistry, 16(1), 78–92.
Ju, H., Ding, L., Sun, C., & Chen, J. (2015). Quantum Chemical Study on the Corrosion Inhibition of Some Oxadiazoles. Adv. Mater. Sci. Eng, 1–5.
Kandagal, P. B., Ashoka, S., Seetharamappa, J., Shaikh, S. M. T., Jadegoud, Y., & Ijare, O. B. (2006). Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. Journal of Pharmaceutical and Biomedical Analysis, 41(2), 393–399.
Krogul, A., Cedrowski, J., Wiktorska, K., Ozimiński, W. P., Skupińska, J., & Litwinienko, G. (2012). Crystal structure, electronic properties and cytotoxic activity of palladium chloride complexes with monosubstituted pyridines. Dalton Transactions, 41(2), 658–666.
Kulakov, I. V., Karbainova, A. A., Shulgau, Z. T., Seilkhanov, T. M., Gatilov, Y. V., & Fisyuk, A. S. (2017). Synthesis and Analgesic Activity of bis (3, 4-dihydroquinoxalin-2 (1 H)-one) and bis (3, 4-dihydro-2 H-1, 4-benzoxazin-2-one) Derivatives. Chemistry of Heterocyclic Compounds, 53, 1094–1097.
Lakowicz, J. R., & Weber, G. (1973). Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry, 12(21), 4161–4170.
Lauria, A., Bonsignore, R., Terenzi, A., Spinello, A., Giannici, F., Longo, A., Almerico, A. M., & Barone, G. (2014). Nickel(II), copper(II) and zinc(II) metallointercalators: structural details of the DNA-binding by a combined experimental and computational investigation. Dalton Transactions, 43(16), 6108–6119.
Lazić, D., Arsenijević, A., Puchta, R., Bugarčić, Ž. D., & Rilak, A. (2016). DNA binding properties, histidine interaction and cytotoxicity studies of water-soluble ruthenium (II) terpyridine complexes. Dalton Transactions, 45(11), 4633–4646.
Li, Y., Cheng, M., Hao, J., Wang, C., Jia, G., & Li, C. (2015). Terpyridine–Cu (II) targeting human telomeric DNA to produce highly stereospecific G-quadruplex DNA metalloenzyme. Chemical Science, 6(10), 5578–5585.
Mazumder, M. E. H., Beale, P., Chan, C., Yu, J. Q., & Huq, F. (2012). Synthesis and Cytotoxicity of Three trans‐Palladium Complexes Containing Planaramine Ligands in Human Ovarian Tumor Models. ChemMedChem, 7(10), 1840–1846.
Meadows, K. A., Liu, F., Sou, J., Hudson, B. P., & McMillin, D. R. (1993). Spectroscopic and photophysical studies of the binding interactions between copper phenanthroline complexes and RNA. Inorganic Chemistry, 32(13), 2919–2923.
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.
Ott, I., & Gust, R. (2007). Non platinum metal complexes as anti‐cancer drugs. Archiv Der Pharmazie: An International Journal Pharmaceutical and Medicinal Chemistry, 340(3), 117–126.
Petronijević, J., Janković, N., Stanojković, T. P., Joksimović, N., Grozdanić, N. Đ., Vraneš, M., Tot, A., & Bugarčić, Z. (2018). Biological evaluation of selected 3,4-dihydro-2(1H)-quinoxalinones and 3,4-dihydro-1,4-benzoxazin-2-ones: molecular docking study. Arch. Pharm. Chem. Life Sci, 351(5), 1700308. https://doi.org/10.1002/ardp.201700308.
Prokop, P., Gelbrich, T., Sieler, J., Richter, R., & Beyer, L. (2001). Kristallstrukturen ferrocenhaltiger 1,3‐Diketon‐und Enaminoketon‐Derivate. Zeitschrift Für Anorganische Und Allgemeine Chemie, 627(5), 965–972.
Qaroush, A. K., & Abu-Mahtheieh, A. M. (2010). New palladium (II) complexes bearing pyrazole-based Schiff base ligands: Synthesis, characterization and cytotoxicity. European Journal of Medicinal Chemistry, 45(2), 471–475.
Rosenberg, B., Camp, L., & Krigas, T. (1965). Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, 205(4972), 698–699.
Sánchez, M. I., Penas, C., Vázquez, M. E., & Mascareñas, J. L. (2014). Metal-catalyzed uncaging of DNA-binding agents in living cells. Chemical Science, 5(5), 1901–1907.
Sanner, M. F. (1999). Python: a programming language for software integration and development. J Mol Graph Model, 17(1), 57–61.
Santos, S. X., & Cavalheiro, É. T. (2014). Using of a graphite-polyurethane composite electrode modified with a Schiff base as a bio-inspired sensor in the dopamine determination. Journal of the Brazilian Chemical Society, 25, 1071–1077.
Sastry, J., & Kellie, S. J. (2005). Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatric Hematology and Oncology, 22(5), 441–445.
Shehab, W. S., & El-Bassyouni, G. T. (2018). Synthesis and cyclization of β-keto-enol derivatives tethered indole and pyrazole as potential antimicrobial and anticancer activity. Journal of the Iranian Chemical Society, 15, 1639–1645.
Shen, H. Y., Shao, X. L., Xu, H., Jia, L. I., & Pan, S. D. (2011). In vitro study of DNA interaction with trichlorobenzenes by spectroscopic and voltametric techniques. International Journal of Electrochemical Science, 6(3), 532–547.
Stepanova, E. E., Dmitriev, M. V., & Maslivets, A. N. (2019). Reaction of Acylpyruvic Acids and Their Esters with N-(2-Aminophenyl) acetamide. Russian Journal of Organic Chemistry, 55, 402–405.
Strekowski, L., & Wilson, B. (2007). Noncovalent interactions with DNA: an overview. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 623(1–2), 3–13.
Trevisan, A., Marzano, C., Cristofori, P., Borella Venturini, M., Giovagnini, L., & Fregona, D. (2002). Synthesis of a palladium (II)-dithiocarbamate complex: biological assay and nephrotoxicity in rats. Archives of Toxicology, 76, 262–268.
V., A., R., M., J., E. B., A., G., S., G., P., C., P.J., B., C., V., & E, L. (2010). and isoxazoles under different pH conditions. Synthesis Of, 2, 3 and 4(1), 5-.
Wang, N. M., & Lee, H. M. (2015). Palladium complexes with tridentate N-heterocyclic carbene ligands: Selective “normal” and “abnormal” bindings and their anticancer activities. Organometallics, 34(17), 4359–4368.
Zalesov, V. V., Kataev, S. S., Pulina, N. A., & Kovylyaeva, N. V. (2002). 4-Aryl-2, 4-dioxobutanoic acids and their derivatives in reactions with diazoalkanes. Russian Journal of Organic Chemistry, 38, 840–844.
Zhang, K. J., & Liu, W. Y. (2011). Investigation of the electrochemical interaction behavior of DNA with 5-fluorouracil derivatives. International Journal of Electrochemical Science, 6(5), 1669–1678.
Zolezzi, S., Decinti, A., & Spodine, E. (1999). Syntheses and characterization of copper (II) complexes with Schiff-base ligands derived from ethylenediamine, diphenylethylenediamine and nitro, bromo and methoxy salicylaldehyde. Polyhedron, 18(6), 897–904.

Citation

Copyright

Authors retain copyright. This work is licensed under a Creative Commons Attribution 4.0 International License

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Most read articles

Abstracting, Indexing & Archiving

Partners