This study examined the effect of adding selected plant species on the antioxidant and antimicrobial properties of Janj cheese. Twelve cheese samples were prepared in two batches, each including one control sample and five samples enriched with oregano (Origanum vulgare), basil (Ocimum basilicum), parsley (Petroselinum crispum), rosemary (Rosmarinus officinalis), and chives (Allium schoenoprasum). The first batch contained 0.50%, while the second batch had 1.00% concentrations of the plants. Total phenols, flavonoids, and non-flavonoid compounds were measured. Antioxidant activity was assessed through FRAP, DPPH, and ABTS assays. Antimicrobial activity was evaluated using the agar dilution method against four bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus) and two Candida albicans strains. The results revealed a statistically significant increase (p<0.05) in antioxidant activity in the plant-enriched cheese samples, emphasizing their potential as natural sources of antioxidants. However, none of the cheeses showed antimicrobial activity under the tested conditions. In conclusion, the incorporation of these selected plant species improves the biological and functional properties of Janj cheese, supporting its potential as a nutritionally enhanced product.
Conceptualization, D.S., A.V., A.S., J.S. and V.M.; Data curation, D.S.; Formal Analysis, D.S., A.V., A.S., L.T.T. and V.M.; Funding acquisition, D.S., A.V., A.S., J.S. and V.M.; Investigation, D.S.; Methodology, D.S., A.V., A.S., L.T.T. and V.M.; Project administration, D.S.; Resources, D.S., J.S. and V.M.; Software, D.S. and A.V.; Supervision, D.S.; Validation, D.S. and J.S.; Visualization, D.S. and J.S.; Writing – original draft, D.S. and J.S.; Writing – review & editing, D.S., A.V., A.S. and J.S. All authors have read and agreed to the published version of the manuscript.
References
Alberto, M. R., Rinsdahl Canavosio, M. A., & Nadra, M. C. (2006). Antimicrobial effect of polyphenols from apple skins on human bacterial pathogens. Electronic Journal of Biotechnology, 9(3), 10 2225 9-3-1.
Ankri, S., & Mirelman, D. (1999). Antimicrobial properties of allicin from garlic. Microbes and Infection, 1(2), 125–129. https://doi.org/10.1016/s1286-4579(99)80003-3
Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446–475. https://doi.org/10.1016/j.fct.2007.09.106
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
Btissam, R., Fatima, E. M., Kamal, E., Hassane, G., & Mohamed, N. (2018). Composition and Antibacterial Activity of Hydro-Alcohol and Aqueous Extracts Obtained from the Lamiaceae Family. Pharmacognosy Journal, 10(1), 81–91. https://doi.org/10.5530/pj.2018.1.16
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Clarke, H. J., McCarthy, W. P., O’Sullivan, M. G., Kerry, J. P., & Kilcawley, K. N. (n.d.). Oxidative Quality of Dairy Powders: Influencing Factors and Analysis. Foods, 10(10), 2315. https://doi.org/10.3390/foods10102315
Cushnie, T. P. T., Cushnie, B., & Lamb, A. J. (2014). Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. International Journal of Antimicrobial Agents, 44(5), 377–386. https://doi.org/10.1016/j.ijantimicag.2014.06.001
Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., & Vidal, N. (2006). Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chemistry, 97(4), 654–660. https://doi.org/10.1016/j.foodchem.2005.04.028
Dorman, H. J. D., & Deans, S. G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308–316. https://doi.org/10.1046/j.1365-2672.2000.00969.x
DRĂGAN , F., MOISA, C. F., TEODORESCU, A., BURLOU-NAGY, C., FODOR, K. I., MARCU, F., POPA, D. E., & TEAHA, D. I. M. (2022). EVALUATING IN VITRO ANTIBACTERIAL AND ANTIOXIDANT PROPERTIES OF ORIGANUM VULGARE VOLATILE OIL. FARMACIA, 70(6), 1114–1122. https://doi.org/10.31925/farmacia.2022.6.15
El-Sayed, M. M., Metwally, N. H., Ibrahim, I. A., Abdel-Hady, H., & Abdel-Wahab, B. S. A. (2018). Antioxidant Activity, Total Phenolic and Flavonoid Contents of Petroselinum crispum Mill. Journal of Applied Life Sciences International, 19(2), 1–7. https://doi.org/10.9734/jalsi/2018/45113
European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). (n.d.). Clinical Microbiology and Infection, 6(9), 509–515.
Gad, A. S., & Sayd, A. F. (2015). Antioxidant Properties of Rosemary and Its Potential Uses as Natural Antioxidant in Dairy Products—A Review. Food and Nutrition Sciences, 06(01), 179–193. https://doi.org/10.4236/fns.2015.61019
Ghasemzadeh, A., Ashkani, S., Baghdadi, A., Pazoki, A., Jaafar, H., & Rahmat, A. (2016). Improvement in Flavonoids and Phenolic Acids Production and Pharmaceutical Quality of Sweet Basil (Ocimum basilicum L.) by Ultraviolet-B Irradiation. Molecules, 21(9), 1203. https://doi.org/10.3390/molecules21091203
Golshani, Z., & Sharifzadeh, A. (2014). Evaluation of antibacterial activity of alcoholic extract of rosemary leaves against pathogenic strains. Zahedan Journal of Research in Medical Sciences, 16(3), 12–15.
Gülçin, I. (2012). Antioxidant activity of food constituents: an overview. Archives of Toxicology, 86(3), 345–391. https://doi.org/10.1007/s00204-011-0774-2
Guo, M., Yang, L., Li, X., Tang, H., Li, X., Xue, Y., & Duan, Z. (2023). Antioxidant Efficacy of Rosemary Extract in Improving the Oxidative Stability of Rapeseed Oil during Storage. Foods, 12(19), 3583. https://doi.org/10.3390/foods12193583
Gyawali, R., & Ibrahim, S. A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412–429. https://doi.org/10.1016/j.foodcont.2014.05.047
György, É., Laslo, É., & Salamon, B. (2023). Antimicrobial impacts of selected Lamiaceae plants on bacteria isolated from vegetables and their application in edible films. Food Bioscience, 51, 102280. https://doi.org/10.1016/j.fbio.2022.102280
Han, F., Ma, G., Yang, M., Yan, L., Xiong, W., Shu, J., Zhao, Z., & Xu, H. (2017). Chemical composition and antioxidant activities of essential oils from different parts of the oregano. Journal of Zhejiang University-SCIENCE B, 18(1), 79–84. https://doi.org/10.1631/jzus.b1600377
Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry, 13(10), 572–584. https://doi.org/10.1016/s0955-2863(02)00208-5
Jerónimo, E., & Malcata, F. X. (2016). Cheese: Composition and Health Effects. In Encyclopedia of Food and Health (pp. 741–747). https://doi.org/10.1016/b978-0-12-384947-2.00137-9
Josipović, R., Markov, K., Frece, J., Stanzer, D., Cvitković, A., & Mrvčić, J. (2016). Upotreba začina u proizvodnji tradicionalnih sireva. Mljekarstvo, 66(1), 12–25. https://doi.org/10.15567/mljekarstvo.2016.0102
Josipović, R., Medverec Knežević, Z., Frece, J., Markov, K., Kazazić, S., & Mrvčić, J. (2015). Nutrition Quality and Microbiological Safety of Novel Cottage Cheese. Food Technology and Biotechnology, 53. https://doi.org/10.17113/ftb.53.04.15.4029
Khorsand, G. J., Morshedloo, M. R., Mumivand, H., Bistgani, Z. E., Maggi, F., & Khademi, A. (2022). Natural diversity in phenolic components and antioxidant properties of oregano (Origanum vulgare L.) accessions, grown under the same conditions. Scientific Reports, 12(1), 5813. https://doi.org/10.1038/s41598-022-09742-4
Lenková, M., Bystrická, J., Tóth, T., & Hrstková, M. (2016). Evaluation and comparison of the content of total polyphenols and antioxidant activity of selected species of the genus Allium. Journal of Central European Agriculture, 17(4), 1119–1133. https://doi.org/10.5513/jcea01/17.4.1820
Leroy, F., & De Vuyst, L. (2004). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology, 15(2), 67–78. https://doi.org/10.1016/j.tifs.2003.09.004
Ličina, B. Z., Stefanović, O. D., Vasić, S. M., Radojević, I. D., Dekić, M. S., & Čomić, L. R. (2013). Biological activities of the extracts from wild growing Origanum vulgare L. Food Control, 33(2), 498–504. https://doi.org/10.1016/j.foodcont.2013.03.020
Liyana-Pathirana, C. M., & Shahidi, F. (2005). Antioxidant Activity of Commercial Soft and Hard Wheat (Triticum aestivumL.) as Affected by Gastric pH Conditions. Journal of Agricultural and Food Chemistry, 53(7), 2433–2440. https://doi.org/10.1021/jf049320i
Manilal, A., Sabu, K. R., Woldemariam, M., Aklilu, A., Biresaw, G., Yohanes, T., Seid, M., & Merdekios, B. (2021). Antibacterial activity of Rosmarinus officinalis against multidrug-resistant clinical isolates and meat-borne pathogens. Evidence-Based Complementary and Alternative Medicine, Article 6677420.
Montel, M.-C., Buchin, S., Mallet, A., Delbes-Paus, C., Vuitton, D. A., Desmasures, N., & Berthier, F. (2014). Traditional cheeses: Rich and diverse microbiota with associated benefits. International Journal of Food Microbiology, 177, 136–154. https://doi.org/10.1016/j.ijfoodmicro.2014.02.019
Mujić, S. (2022). Domaćice u Janju “upliću” sir – jedine ga tako prave u svijetu. Agro Klub. . https://www.agroklub.ba/prehrambena-industrija/domacice-u-janju-uplcu-sir-jedine-ga-tako-prave-u-svijetu/76466/.
Muntean, D., & Vulpie, S. (n.d.). Antioxidant and Antibacterial Activity of Plant Extracts. Antibiotics, 12(7), 1176. https://doi.org/10.3390/antibiotics12071176
Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., & De Feo, V. (2013). Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals, 6(12), 1451–1474. https://doi.org/10.3390/ph6121451
Nieto, G., Ros, G., & Castillo, J. (2018). Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines, 5(3), 98. https://doi.org/10.3390/medicines5030098
Official Gazette Bosnia and Herzegovina. (2011). Regulation on milk and dairy products. 21.
Pérez-Jiménez, J., Neveu, V., Vos, F., & Scalbert, A. (2010). Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. European Journal of Clinical Nutrition, 64(S3), S112–S120. https://doi.org/10.1038/ejcn.2010.221
Petersen, M. (2003). Rosmarinic acid. Phytochemistry, 62(2), 121–125. https://doi.org/10.1016/s0031-9422(02)00513-7
Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Science, 4(2), 89–96.
Pihlanto, A. (2006). Antioxidative peptides derived from milk proteins. International Dairy Journal, 16(11), 1306–1314. https://doi.org/10.1016/j.idairyj.2006.06.005
Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290–4302. https://doi.org/10.1021/jf0502698
Qamar, F., Sana, A., Naveed, S., & Faizi, S. (2023). Phytochemical characterization, antioxidant activity and antihypertensive evaluation of Ocimum basilicum L. in l-NAME induced hypertensive rats and its correlation analysis. Heliyon, 9(4), e14644. https://doi.org/10.1016/j.heliyon.2023.e14644
Raut, J. S., & Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial Crops and Products, 62, 250–264. https://doi.org/10.1016/j.indcrop.2014.05.055
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3
Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933–956. https://doi.org/10.1016/0891-5849(95)02227-9
Rizzoli, R. (2022). Dairy products and bone health. Aging Clinical and Experimental Research, 34, 9–24. https://doi.org/10.1007/s40520-021-01970-4
Simirgiotis, M. J., Burton, D., Parra, F., López, J., Muñoz, P., Escobar, H., & Parra, C. (2020). Antioxidant and Antibacterial Capacities of Origanum vulgare L. Essential Oil from the Arid Andean Region of Chile and its Chemical Characterization by GC-MS. Metabolites, 10(10), 414. https://doi.org/10.3390/metabo10100414
Stan, M., Soran, M. L., Varodi, C., Lung, I., & Lazar, M. D. (2012). Extraction and identification of flavonoids from parsley extracts by HPLC analysis. . AIP Conference Proceedings, 1425(1), 50–52. https://doi.org/10.1063/1.3681964
Stanojević, L. P., Stanojević, J. S., Cvetković, D. J., & Ilić, D. P. (2016). Antioxidant activity of oregano essential oil (Origanum vulgare L. Biologica Nyssana, 7(2), 131–139. https://doi.org/10.5281/zenodo.200410
Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21(9), 1199–1218. https://doi.org/10.1016/j.foodcont.2010.02.003
Todorović, V., Dančetović, A., Dabetić, N., Šobajić, S., & Vidović, B. (2018). Antioxidant activity of selected spices from Serbian market. Hrana i Ishrana, 59(2), 74–79. https://doi.org/10.5937/hraish1802074t
Ultee, A., Kets, E. P. W., & Smid, E. J. (1999). Mechanisms of Action of Carvacrol on the Food-Borne Pathogen Bacillus cereus. Applied and Environmental Microbiology, 65(10), 4606–4610. https://doi.org/10.1128/aem.65.10.4606-4610.1999
Vujko, A., Arsić, M., & Bojović, R. (2025). From Local Product to Destination Identity: Leveraging Cave-Aged Cheese for Sustainable Rural Tourism Development. Agriculture, 15(11), 1137. https://doi.org/10.3390/agriculture15111137
Vuković, S., Popović-Djordjević, J. B., Kostić, A. Ž., Pantelić, N. Dj., Srećković, N., Akram, M., Laila, U., & Katanić Stanković, J. S. (2023). Allium Species in the Balkan Region—Major Metabolites, Antioxidant and Antimicrobial Properties. Horticulturae, 9(3), 408. https://doi.org/10.3390/horticulturae9030408
Walther, B., Schmid, A., Sieber, R., & Wehrmüller, K. (2008). Cheese in nutrition and health. Dairy Science and Technology, 88(4–5), 389–405. https://doi.org/10.1051/dst:2008012
Wiegand, I., Hilpert, K., & Hancock, R. E. W. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163–175. https://doi.org/10.1038/nprot.2007.521
Wolfe, B. E., Button, J. E., Santarelli, M., & Dutton, R. J. (2014). Cheese Rind Communities Provide Tractable Systems for In Situ and In Vitro Studies of Microbial Diversity. Cell, 158(2), 422–433. https://doi.org/10.1016/j.cell.2014.05.041
Wolfe, K., Wu, X., & Liu, R. H. (2003). Antioxidant Activity of Apple Peels. Journal of Agricultural and Food Chemistry, 51(3), 609–614. https://doi.org/10.1021/jf020782a
Zhang, X.-L., Guo, Y.-S., Wang, C.-H., Li, G.-Q., Xu, J.-J., Chung, H. Y., Ye, W.-C., Li, Y.-L., & Wang, G.-C. (2014). Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chemistry, 152, 300–306. https://doi.org/10.1016/j.foodchem.2013.11.153
Zhong, X., Wang, X., Zhou, N., Li, J., Liu, J., Yue, J., Hao, X., Gan, M., Lin, P., & Shang, X. (2021). Chemical characterization of the polar antibacterial fraction of the ethanol extract from Rosmarinus officinalis. Food Chemistry, 344, 128674. https://doi.org/10.1016/j.foodchem.2020.128674
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.