This study explores the use of natural plant extracts as a sustainable method to enhance the quality and safety of long-life sausages by incorporating them into natural edible casings. Ethanol (E) and aqueous (A) extracts of blackthorn (BT) and red cherry (RC), as well as their ethanol and water-based solutions, were prepared and analysed for their antioxidant and antimicrobial properties. The analyses included the quantification of total phenols, non-flavonoids, flavonoids, flavonols, and anthocyanins, along with antioxidant activity assessments using FRAP, DPPH, and ABTS assays. Antimicrobial efficacy was tested against Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Salmonella enterica) and mold Penicillium expansum via agar dilution methods to determine MIC and MBC/MFC.
Results showed that ethanol extracts had higher antioxidant activity than aqueous ones (p<0.05), with the ethanol extract of blackthorn (EBT) containing the highest levels of phenolics (54.11 mg GAE/g d.e.) and exhibiting the strongest antioxidant, antimicrobial, and antifungal activities. Casings treated with EBTE (ethanol BT extract dissolved in ethanol) demonstrated significant antibacterial properties, particularly against Gram-negative bacteria. This study confirms that plant-extract-enriched natural casings can protect against oxidation and microbial spoilage, thereby enhancing the overall quality and safety of dry-cured sausages.
Conceptualization, A.V.; Data curation, A.V. and A.S.; Formal Analysis, A.V., A.S. and L.T.; Investigation, A.V. and L.T.; Writing – original draft, A.V.; Supervision, S.M., A.S. and D.S.; Writing – review & editing, S.M., A.S. and D.S. All authors have read and agreed to the published version of the manuscript.
References
Aglar, E., Saracoglu, O., Karakaya, O., Ozturk, B., & Gun, S. (2019). The relationship between fruit color and fruit quality of sweet cherry (Prunus avium L. cv. ‘0900 Ziraat.’ Turkish Journal of Food and Agriculture Sciences, 1(1), 1–5.
Alberto, M. R., Rinsdahl Canavosio, M. A., & Nadra, M. C. (2006). Antimicrobial effect of polyphenols from apple skins on human bacterial pathogens. Electronic Journal of Biotechnology, 9(3), 205–209. https://doi.org/10.4067/S0717-34582006000300006.
Alhijazeen, M. (2014). Effect of oregano essential oil and tannic acid on storage stability and quality of ground chicken meat. Dissertation. Ames, Iowa: Iowa State University.
Bajić-Ljubičić, J. (2018). Varijabilnost sadržaja odabranih fenolnih jedinjenja u ekstraktima plodova pet šumskih drvenastih vrsta sa različitih staništa u Srbiji. Doktorska disertacija. Beograd, Srbija: Univerzitet u Beogradu.
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
Blackhall, M. L., Berry, R., Davies, N. W., & Walls, J. T. (2018). Optimized extraction of anthocyanins from Reid Fruits’ Prunus avium ‘Lapins’ cherries. Food Chemistry, 256, 280–285. https://doi.org/10.1016/j.foodchem.2018.02.137
Botsaris, G., Orphanides, A., Yiannakou, E., Gekas, V., & Goulas, V. (2015). Antioxidant and Antimicrobial Effects of Pistacia lentiscus L. Extracts in Pork Sausages. Food Technology and Biotechnology, 53(4), 472–478.
Dobrucka, R., & Cierpiszewski, R. (2014). Active and Intelligent Packaging Food - Research and Development – A Review. Polish Journal of Food and Nutrition Sciences, 64(1), 7–15. https://doi.org/10.2478/v10222-012-0091-3
Eça, K. S., Sartori, T., & Menegalli, F. C. (2014). Films and edible coatings containing antioxidants - a review. Brazilian Journal of Food Technology, 17(2), 98–112. https://doi.org/10.1590/bjft.2014.017
Escmid, E. (2000). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clinical Microbiology and Infection, 6(9), 509–515. https://doi.org/10.1046/j.1469-0691.2000.00142.x
Galić, K. (2009). Jestiva ambalaža u prehrambenoj industriji. Hrvatski Časopis Za Prehrambenu Tehnologiju, Biotehnologiju i Nutricionizam, 4(1–2), 23–31.
Gegiu, G., Branza, A.-D., Bucur, L., Grigorian, M., Tache, T., & Badea, V. (2015). Contributions to the antimicrobial and antifungal study of the aqueous extract of Prunus spinosa L. Farmacia, 63, 275–279.
Gonçalves, J., Ramos, R., Luís, Â., Rocha, S., Rosado, T., Gallardo, E., & Duarte, A. P. (2019). Assessment of the Bioaccessibility and Bioavailability of the Phenolic Compounds of Prunus avium L. by in Vitro Digestion and Cell Model. ACS Omega, 4(4), 7605–7613. https://doi.org/10.1021/acsomega.8b03499
González-Gómez, D., Lozano, M., Fernández-León, M. F., Bernalte, M. J., Ayuso, M. C., & Rodríguez, A. B. (2010). Sweet cherry phytochemicals: Identification and characterization by HPLC-DAD/ESI-MS in six sweet-cherry cultivars grown in Valle del Jerte (Spain). Journal of Food Composition and Analysis, 23(6), 533–539. https://doi.org/10.1016/j.jfca.2009.02.008
Hanbali, L. B., Amiry, J. G., Ghadieh, R. M., Hasan, H. A., Koussan, S. S., Nakhal, Y. K., Tarraf, A. M., & Haddad, J. J. (2012). The Antimicrobial Activity of Sweet Cherry (Prunus avium) Extracts: II. Measurement of Sensitivity and Attenuation of Gram-Positive and Gram- Negative Bacteria and C. albicans in Culture. Current Nutrition & Food Science, 8(4), 292–303. https://doi.org/10.2174/157340112803832174
Hayaloglu, A. A., & Demir, N. (2015). Physicochemical characteristics, antioxidant activity, organic acid and sugar contents of 12 sweet cherry (Prunus avium L.) cultivars grown in Turkey. Journal of Food Science, 80(3), 564–570.
Hromis, N., Sojic, B., Skaljac, S., Lazic, V., Dzinic, N., Suput, D., & Popovic, S. (2013). Effect of chitosan-caraway coating on color stability and lipid oxidation of traditional dry fermented sausage. Acta Periodica Technologica, 44, 57–65. https://doi.org/10.2298/apt1344057h
Ibrahim, H. M., Abou-Arab, A. A., & Abu Salem, F. M. (n.d.). Antioxidant and antimicrobial effect of some natural plant extracts added to lamb patties during storage. Grasas y Aceites, 62(2), 139–148. https://doi.org/10.3989/gya.066510
Iglesias-Carres, L., Mas-Capdevila, A., Bravo, F. I., Mulero, M., Muguerza, B., & Arola-Arnal, A. (n.d.). Optimization and characterization of Royal Dawn cherry (Prunus avium) phenolics extraction. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-54134-w
Jahani, S., Shakiba, A., & Azami, M. (n.d.). Functional properties, antibacterial and antioxidant activities of Zataria multiflora encapsulated in geltin nanofilms. Journal of Microbiology, Biotechnology and Food Sciences, 4(2), 88–92. https://doi.org/10.15414/jmbfs.2014.4.2.88-92
Król, Ż., Kulig, D., Marycz, K., Zimoch-Korzycka, A., & Jarmoluk, A. (n.d.). The Effects of Using Sodium Alginate Hydrosols Treated with Direct Electric Current as Coatings for Sausages. Polymers, 9(11), 602. https://doi.org/10.3390/polym9110602
Kumaran, A., & Joel Karunakaran, R. (2007). In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT - Food Science and Technology, 40(2), 344–352. https://doi.org/10.1016/j.lwt.2005.09.011
Lee, J., Durst, R., & Wrolstad, R. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative Study. Journal of AOAC International, 88(5), 1269–1278.
Leichtweis, M. G., Pereira, C., Prieto, M. A., Barreiro, M. F., Baraldi, I. J., Barros, L., & Ferreira, I. C. F. R. (n.d.). Ultrasound as a Rapid and Low-Cost Extraction Procedure to Obtain Anthocyanin-Based Colorants from Prunus spinosa L. Fruit Epicarp: Comparative Study with Conventional Heat-Based Extraction. Molecules, 24(3), 573. https://doi.org/10.3390/molecules24030573
Liyana-Pathirana, C. M., & Shahidi, F. (2005). Antioxidant Activity of Commercial Soft and Hard Wheat (Triticum aestivumL.) as Affected by Gastric pH Conditions. Journal of Agricultural and Food Chemistry, 53(7), 2433–2440. https://doi.org/10.1021/jf049320i
María Ruiz-Rodríguez, B., de Ancos, B., Sánchez-Moreno, C., Fernández-Ruiz, V., de Cortes Sánchez-Mata, M., Cámara, M., & Tardío, J. (2014). Wild blackthorn (Prunus spinosaL.) and hawthorn (Crataegus monogynaJacq.) fruits as valuable sources of antioxidants. Fruits, 69(1), 61–73. https://doi.org/10.1051/fruits/2013102
Mohd Azman, N., Gallego, M., Segovia, F., Abdullah, S., Shaarani, S., & Almajano Pablos, M. (2016). Study of the Properties of Bearberry Leaf Extract as a Natural Antioxidant in Model Foods. Antioxidants, 5(2), 11. https://doi.org/10.3390/antiox5020011
Nazmi, N. N. M., & Mhd. Sarbon, N. (2019). Characterization on antioxidant and physical properties of gelatin based composite films with incorporation of Centella asiatica (pegaga) extract. Food Research, 4(1), 224–233. https://doi.org/10.26656/fr.2017.4(1).243
Nikmaram, N., Budaraju, S., Barba, F. J., Lorenzo, J. M., Cox, R. B., Mallikarjunan, K., & Roohinejad, S. (2018). Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat Science, 145, 245–255. https://doi.org/10.1016/j.meatsci.2018.06.031
Özvural, E. B., Huang, Q., & Chikindas, M. L. (2016). The comparison of quality and microbiological characteristic of hamburger patties enriched with green tea extract using three techniques: Direct addition, edible coating and encapsulation. LWT - Food Science and Technology, 68, 385–390. https://doi.org/10.1016/j.lwt.2015.12.036
Peighambardoust, S. H., Fasihnia, S. H., Peighambardoust, S. J., Pateiro, M., Domínguez, R., & Lorenzo, J. M. (2021). Active Polypropylene-Based Films Incorporating Combined Antioxidants and Antimicrobials: Preparation and Characterization. 10(4), 722.
Pinacho, R., Cavero, R. Y., Astiasarán, I., Ansorena, D., & Calvo, M. I. (2015). Phenolic compounds of blackthorn (Prunus spinosa L.) and influence of in vitro digestion on their antioxidant capacity. Journal of Functional Foods, 19, 49–62. https://doi.org/10.1016/j.jff.2015.09.015
Pinho, E., Magalhães, L., Henriques, M., & Oliveira, R. (2011). Antimicrobial activity assessment of textiles: standard methods comparison. Annals of Microbiology, 61(3), 493–498. https://doi.org/10.1007/s13213-010-0163-8
Pires, C., Ramos, C., Teixeira, B., Batista, I., Nunes, M. L., & Marques, A. (2013). Hake proteins edible films incorporated with essential oils: Physical, mechanical, antioxidant and antibacterial properties. Food Hydrocolloids, 30(1), 224–231. https://doi.org/10.1016/j.foodhyd.2012.05.019
Pliszka, B., Huszcza-Ciołkowska, G., Januszewicz, E., & Warmińska-Radyko, I. (2013). Stability, microbiological quality, and antioxidant properties of extracts from berry fruits. Acta Alimentaria, 42(2), 256–263. https://doi.org/10.1556/aalim.42.2013.2.13
Pozzo, L., Russo, R., Frassinetti, S., Vizzarri, F., Árvay, J., Vornoli, A., Casamassima, D., Palazzo, M., Della Croce, C. M., & Longo, V. (2020). Wild Italian Prunus spinosa L. Fruit Exerts In Vitro Antimicrobial Activity and Protects Against In Vitro and In Vivo Oxidative Stress. Foods, 9(1), 5. https://doi.org/10.3390/foods9010005
Radovanović, B. C., Anđelković, S. M., Radovanović, A. B., & Anđelković, M. Z. (2013). Antioxidant and antimicrobial activity of polyphenol extracts from wild berry fruits grown in southeast Serbia. Tropical Journal of Pharmaceutical Research, 12(5), 813–819.
Radulović, N. S., Blagojević, P. D., Stojanović-Radić, Z. Z., & Stojanović, N. M. (2013). Antimicrobial plant metabolites: Structural diversity and mechanism of action. Current Medicinal Chemistry, 20(7), 932–952.
Raeisi, M., Tabaraei, A., Hashemi, M., & Behnampour, N. (2016). Effect of sodium alginate coating incorporated with nisin, Cinnamomum zeylanicum, and rosemary essential oils on microbial quality of chicken meat and fate of Listeria monocytogenes during refrigeration. International Journal of Food Microbiology, 238, 139–145. https://doi.org/10.1016/j.ijfoodmicro.2016.08.042
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3
Rimpapa, Z., Toromanovic, J., Tahirovic, I., Šapčanin, A., & Sofic, E. (2007). Total content of phenols and anthocyanins in edible fruits from Bosnia. Bosnian Journal of Basic Medical Sciences, 7(2), 119–122.
Rovčanin, B. R., Tatjana, Steševi, D., Keki, D., & Risti, M. (2015). Antibacterial effect of Herniaria hirsuta, Prunus avium, Rubia tinctorum and Sempervivum tectorum plant extracts on multiple antibiotic resistant Escherichia coli. Bioscience Journal, 31(6), 1852–1861. https://doi.org/10.14393/bj-v31n6a2015-29091
Ruiz-Torralba, A., Guerra-Hernández, E. J., & García-Villanova, B. (2018). Antioxidant capacity, polyphenol content and contribution to dietary intake of 52 fruits sold in Spain. CyTA - Journal of Food, 16(1), 1131–1138. https://doi.org/10.1080/19476337.2018.1517828
Salarbashi, D., Tajik, S., Shojaee-Aliabadi, S., Ghasemlou, M., Moayyed, H., Khaksar, R., & Noghabi, M. S. (2014). Development of new active packaging film made from a soluble soybean polysaccharide incorporated Zataria multiflora Boiss and Mentha pulegium essential oils. Food Chemistry, 146, 614–622. https://doi.org/10.1016/j.foodchem.2013.09.014
Šarić, B. (2016). Iskorišćenje tropa borovnice i maline u formulaciji bezglutenskog keksa sa dodatom vrednošću. Doktorska disertacija. Novi Sad, Srbija: Univerzitet u Novom Sadu, Tehnološki fakultet.
Serra, A. T., Duarte, R. O., Bronze, M. R., & Duarte, C. M. M. (2011). Identification of bioactive response in traditional cherries from Portugal. Food Chemistry, 125(2), 318–325. https://doi.org/10.1016/j.foodchem.2010.07.088
Serradilla, M. J., Lozano, M., Bernalte, M. J., Ayuso, M. C., López-Corrales, M., & González-Gómez, D. (2011). Physicochemical and bioactive properties evolution during ripening of ‘Ambrunés’ sweet cherry cultivar. LWT - Food Science and Technology, 44(1), 199–205. https://doi.org/10.1016/j.lwt.2010.05.036
Shojaee-Aliabadi, S., Hosseini, H., Mohammadifar, M. A., Mohammadi, A., Ghasemlou, M., Ojagh, S. M., Hosseini, S. M., & Khaksar, R. (2013). Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. International Journal of Biological Macromolecules, 52, 116–124. https://doi.org/10.1016/j.ijbiomac.2012.08.026
Simić, V. M. (2018). Optimizacija mikrotalasne ekstrakcije polifenolnih jedinjenja iz ploda aronije (Aronia melanocarpa L.). Doktorska disertacija. . Niš, Srbija: Univerzitet u Nišu, Tehnološki fakultet u Leskovcu.
Tahirović, A., Bašić, N., & Čopra-Janićijević, A. (2018). Effect of solvents on phenolic compounds extraction and antioxidant activity of Prunus spinosa L. fruits. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 50, 19–24.
Teixeira, B., Marques, A., Pires, C., Ramos, C., Batista, I., Saraiva, J. A., & Nunes, M. L. (2014). Characterization of fish protein films incorporated with essential oils of clove, garlic and origanum: Physical, antioxidant and antibacterial properties. LWT - Food Science and Technology, 59(1), 533–539. https://doi.org/10.1016/j.lwt.2014.04.024
Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571–1579. https://doi.org/10.1016/j.foodchem.2012.03.094
Turker, A. U., Yildirim, A. B., & Karakas, F. P. (2012). Antibacterial and Antitumor Activities of Some Wild Fruits Grown in Turkey. Biotechnology & Biotechnological Equipment, 26(1), 2765–2772. https://doi.org/10.5504/bbeq.2011.0156
Veličković, I., Zizak, Z., Rajcevic, N., Ivanov, M., Soković, M., Marin, P., & Grujić, S. (2020). Examination of the polyphenol content and bioactivities of Prunus spinosa L. fruit extracts. Archives of Biological Sciences, 72, 1–18.
Veličković, J. (2013). Hemijska analiza i antioksidativna aktivnost ekstrakata odabranih biljnih vrsta bogatih fenolnim jedinjenjima. Doktorska disertacija. Niš, Srbija: Univerzitet u Nišu, Prirodno-Matematički Fakultet, Departman Za Hemiju.
Velickovic, J., Kostic, D., Stojanovic, G., Mitic, S., Mitic, M., Randjelovic, S., & Djordjevic, A. (2014). Phenolic composition, antioxidant and antimicrobial activity of the extracts from Prunus spinosa L. fruit. Hemijska Industrija, 68(3), 297–303. https://doi.org/10.2298/hemind130312054v
Wiegand, I., Hilpert, K., & Hancock, R. E. W. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163–175. https://doi.org/10.1038/nprot.2007.521
Wolfe, K., Wu, X., & Liu, R. H. (2003). Antioxidant Activity of Apple Peels. Journal of Agricultural and Food Chemistry, 51(3), 609–614. https://doi.org/10.1021/jf020782a
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.