The adsorption process of metal oxide nanoparticles has been studied as an effective means of removing organic and inorganic contaminants from water and wastewater. In this study, iron (III) oxide (Fe3O4) nanoparticles were synthesized in the presence of moringa oleifera pods (MOP) as an adsorbent for ciprofloxacin (CIP) adsorption. Moringa oleifera pod biochar with Fe3O4 particles precipitated on the surface of biochar was synthesized by co-precipitation method. The effect of various parameters such as contact time, pH, metal concentration and adsorbent dosage on the removal efficiency was determined. The maximum adsorption capacity of CIP by magnetic moringa composite (MMC) was 96.12 mg/g. The Langmuir and Freundlich isotherm equations were used to analyze the equilibrium isotherm data. The adsorption process fit well with the second-order kinetics in all cases, and the Langmuir isotherm equation fitted well with the experimental data.
Ahmadi, S., Banach, A., Mostafapour, F. K., & Balarak, D. (2017). Study survey of cupric oxide nanoparticles in removal efficiency of ciprofloxacin antibiotic from aqueous solution: Adsorption isotherm study. *Desal Water Treat*, 89, 297–303.
Araujo, C. S. T., Alves, V. N., Rezend, H. C., Almeida, I. L. S., Assuncao, R. M. N., Tarley, C. R. T., Segatelli, M. G., & Coelho, N. M. M. (2010). Characterization and use of *Moringa oleifera* seeds as biosorbent for removing metal ions from aqueous effluents. *Wat Sci Tech*, 62(9), 2198–2203.
Avella, A. C., Delgado, L. F., Görner, T., Albasi, C., Galmiche, M., & Donato, P. (2010). Effect of cytostatic drug presence on extracellular polymeric substances formation in municipal wastewater treated by membrane bioreactor. *Bioresource Technology*, 101(2), 518–526.
Balarak, D., & Azarpira, H. (2016). Rice husk as a biosorbent for antibiotic metronidazole removal: Isotherm studies and model validation. *International Journal of Chem Tech Research*, 9(7), 566–573.
Balarak, D., Mahdavi, Y., Bazrafshan, E., & Mahvi, A. H. (2016). Kinetic, isotherms and thermodynamic modeling for adsorption of acid blue 92 from aqueous solution by modified *Azolla filicoloides*. *Fresenius Environmental Bulletin*, 25(5), 1322–1331.
Carabineiro, S. A. C., Thavorn-Amornsri, T., Pereira, M. F. R., Serp, P., & Figueiredo, J. L. (2012). Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. *Catal Today*, 186, 29–34.
Celik, M. S., & Ozdemir, O. (2018). Hetero coagulation of hydrophobized particulates by ionic surfactants. *Physicochem Probl Miner Process*, 54(1), 124–130.
Danalıoğlu, S. T., Bayazit, Ş. S., Kuyumcu, Ö. K., & Salam, M. A. (2017). Efficient removal of antibiotics by a novel magnetic adsorbent: Magnetic activated carbon/chitosan (MACC) nanocomposite. *J Mol Liq*, 240, 589–596.
Dhiman, N., & Sharma, N. (2019). Batch adsorption studies on the removal of ciprofloxacin hydrochloride from aqueous solution using ZnO nanoparticles and groundnut (*Arachis hypogaea*) shell powder: A comparison. *Indian Chemical Engineer*, 61(1), 67–76.
Doorslaer, X., Demeestere, K., Heynderickx, P. M., Langenhove, H., & Dewulf, J. (2011). UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: Reaction kinetics and role of adsorption. *Applied Catalysis B: Environmental*, 101(3–4), 540–547.
Ehrampoush, M. H., Miria, M. S., M.H., & Mahvi, A. H. (2015). Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. *J Environ Health Sci Eng*, 13, 1–7.
Erşan, M., Bağda, E., & Bağda, E. (2013). Investigation of kinetic and thermodynamic characteristics of removal of tetracycline with sponge-like, tannin-based cryogels. *Colloids Surf B Biointerfaces*, 104, 75–82.
Gleick, P. H. (2003). Global freshwater resources: soft-path solutions for the 21st century. *Science*, 302(5650), 1524–1528.
Gu, C., & Karthikeyan, K. G. (2005). Sorption of the antimicrobial ciprofloxacin to aluminium and iron hydrous oxides. *Environ Sci Technol*, 39(23), 9166–9173.
Guerra, D. L., Lemos, V. P., Airoldi, C., & Angélica, R. S. (2006). Influence of the acid activation of pillared smectites from Amazon (Brazil) in adsorption process with butylamine. *Polyhedron*, 25(15), 2880–2890.
Kakavandi, B., Esrafily, A., Mohseni-Bandpi, A., Jafari, A. J., & Kalantary, R. R. (2013). Magnetic Fe3O4@C nanoparticles as adsorbents for removal of amoxicillin from aqueous solution. *Water Sci. Technol*, 69(1), 147–155.
Kandpal, N. D., Sah, N., Loshali, R., Joshi, R., & Prasad, J. (2014). Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. *Journal of Scientific & Industrial Research*, 73(2), 87–90.
Li, Z., Hong, H., Liao, L., Ackley, C. J., Schulz, L. A., MacDonald, R. A., Mihelich, A. L., & Emard, S. M. (2011). A mechanistic study of ciprofloxacin removal by kaolinite. *Colloid Surf B*, 88, 339–344.
Machado, M. O., Lazarin, A. M., & Airoldi, C. (2006). Thermodynamic features associated with intercalation of some n-alkylmonoamines into barium phosphate. *The Journal of Chemical Thermodynamics*, 38(2), 130–135.
Mohammed, A. A., Al-Musawi, T. J., Kareem, S. L., Zarrabi, M., & Al-Ma’abreh, A. M. (2020). Simultaneous adsorption of tetracycline, amoxicillin, and ciprofloxacin by pistachio shell powder coated with zinc oxide nanoparticles. *Arab J Chem*, 13(3), 4629–4643.
Mushtaq, N., Singh, D. V., Bhat, R. A., Dervash, M. A., & Hameed, O. (2020). Freshwater contamination: Sources and hazards to aquatic biota. In *Fresh Water Pollut Dyn Remediat* (pp. 27–50).
Nasseh, N., Al-Musawi, T. J., Miri, M. R., Rodriguez-Couto, S., & Hossein Panahi, A. (2020). A comprehensive study on the application of FeNi3@SiO2@ZnO magnetic nanocomposites as a novel photocatalyst for degradation of tamoxifen in the presence of simulated sunlight. *Environ Pollut*, 261, 114127.
Oliveira, L. C. A., Rios, R. V. R. A., Fabris, J. D., Sapag, K., Garg, V. K., & Lago, R. M. (2003). Clay-iron oxide magnetic composites for the adsorption of contaminants in water. *Appl Clay Sci*, 22(4), 169–177.
Organization, W. H. (2017).
Pan, J., Yao, H., Guan, W., Ou, H., Huo, P., Wang, X., Zou, X., & Li, C. (2011). Selective adsorption of 2,6-dichlorophenol by surface imprinted polymers using polyaniline/silica gel composites as functional support: Equilibrium, kinetics, thermodynamics modelling. *Chem Eng J*, 172(2), 847–855.
Phele, M. J. (2024). Adsorption kinetics and thermodynamics of ciprofloxacin from aqueous solutions by magnetic iron oxide nanoparticles modified Moringa pods. *STED Journal*, 6(2), 10–24.
Reynaud, F., Tsapis, N., Deyme, M., Vasconcelos, T. G., Gueutin, C., Guterres, S. S., Pohlmann, A. R., & Fattal, E. (2011). Spray-dried chitosan–metal microparticles for ciprofloxacin adsorption: Kinetic and equilibrium studies. *Soft Matter*, 7, 7304–7312.
Roca Jalil, M. E., Baschini, M., & Sapag, K. (2017). Removal of ciprofloxacin from aqueous solutions using pillared clays. *Materials*, 10(12), 1345.
Shi, S., Fan, Y., & Huang, Y. (2013). Facile low temperature hydrothermal synthesis of magnetic mesoporous carbon nanocomposite for adsorption removal of ciprofloxacin antibiotics. *Ind Eng Chem Res*, 52(7), 2604–2612.
Sun, S. P., Hatton, T. A., & Chung, T. S. (2011). Hyperbranched polyethyleneimine induced cross-linking of polyamide-imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin. *Environ Sci Technol*, 45(9), 4003–4009.
Tavengwa, N. T., Cukrowska, E., & Chimuka, L. (2016). Application of raw and biocharred *Moringa oleifera* seed powder for the removal of nitrobenzene from aqueous solutions. *Desalination and Water Treatment*, 57(53), 25551–25560.
Wang, C. J., Li, Z., & Jiang, W. T. (2011). Adsorption of ciprofloxacin on 2:1 dio.
Wang, F., Yang, B., Wang, H., Song, Q., Tan, F., & Cao, Y. (2016). Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite. *J Mol Liq*, 222, 188–194.
Witte, B. D., Langenhove, H. V., Demeestere, K., Saerens, K., Wispelaere, P. D., & Dewulf, J. (2010). Ciprofloxacin ozonation in hospital wastewater treatment plant effluent: Effect of pH and H2O2. *Chemosphere*, 78(9), 1142–1147.
Yahya, M. S., Oturan, N., El-Kacemi, K., El-Karbane, M., Aravindakumar, C. T., & Oturan, M. A. (2014). Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-Fenton process. Kinetics and Oxidation Products. *Chemosphere*, 117, 447–454.
Yıldız, N., Erol, M., Aktas, Z., & Çalımlı, A. (2004). Adsorption of aromatic hydrocarbons on BTEA-bentonites. *Adsorption Science & Technology*, 22(2), 145–154.
Zhang, C. L., Qiao, G. L., Zhao, F., & Wang, Y. (2011). Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution. *Journal of Molecular Liquids*, 163(1), 53–56.
Zhang, L., Song, X., Liu, X., Yang, L., Pan, F., & Lv, J. (2011). Studies on the removal of tetracycline by multi-walled carbon nanotubes. *Chem Eng J*, 178, 26–33.
The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.